学情分析:
学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学目标:
1.知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2.过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。
3.情感态度: 使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
探索发现和验证三角形的内角和是180度。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具准备:
教师准备:多媒体课件
不同类形大小不一的三角形若干个 记录表
学生准备:量角器 直尺 剪刀
教学过程
一、激趣导入
多媒体展示三角形
出示谜语: 形状似座山,稳定性能坚
三竿首尾连,学问不简单 (打一图形名称)
(预设:三角形)
师:谁能介绍介绍三角形?
(生1:三角形有三条边、三个顶点、三个角。
生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)
师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)
师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。
师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。
师:今天我们就来研究一下三角形的内角和。
二、学习目标
1.通过动手操作,使学生理解并掌握三角形内角和是180度的结论。
2.能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。
3.培养动手动脑及分析推理能力。
三、自主学习(展示量角法)
1.理解三角形的内角、内角和
(1)板书展示三角形
师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)
师:你能过来指指吗?同意吗?内角有几个?
师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。
师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?
(2)三角形的内角和
师:什么是三角形的内角和?
(三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)
师:就是把∠1+∠2+∠3加起来。
师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)
师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)
学生测量(1分40)汇报结果(5人)。
教师填写测量汇报单。
师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)
四、合作探究
师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。 (8分钟)(剪拼法)
1.操作验证探索三角形内角和的规律 (6分钟)
(1)操作验证:小组合作
拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺 剪刀
(老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
2.学生汇报
(1)转化法:
生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。
师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。
(2)折拼法
生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。
师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)
(3)剪拼法
生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)
标记上之后再拼一拼,可见标记的方法很科学。(20分钟)
3.教师演示
师:我们再来感受一下怎么验证三角形的内角和的?
师:这是什么三角形?把他折一折。
师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)
师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。
师:注意观察。
师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。
师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)
4.演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)
师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)
师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)
师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°
师:你们能用今天的发现做一些练习吗?
五、测评反馈
1.判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4. 剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?
六、课后作业
69页第1题、第3题。
七、板书设计
文档为doc格式